
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081) Internet

Server

re
qu

es
t

re
sp

on
se

Module 1: Introduction

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Introduce .NET Framework and its relation to C#
Discuss the C# programming basics
Develop a small program in C#Develop a small program in C#

2KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

What is a C/S Application?

The Client-Server paradigm is the most prevalent model for distributed
computing systems
The Internet applications are based on the C/S model
A typical network application has two processes
– Client process: a program running on the local machine and requesting a

service from another program (server) usually running at a remote
computer

– Server process: a program running on the remote computer to provide a
service to the clients

Request

3

Network

Request

Response

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basics of .NET

Microsoft introduced .NET technology in June 2000
as a programming platform that simplifies
application development in the highly distributedapplication development in the highly distributed
environment of the Internet.
Applications can be developed for MS Windows
workstations and servers in a variety of
programming languages
A new programming language is developed

4

A new programming language is developed
specifically for the .NET platform is called C#
C# has become a widely used programming
language to create both network-aware and stand-
alone applications for Windows systems

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

Basics of .NET …

The .NET Framework Design Objectives:
– Consistent object-oriented programming environment whether object

code is stored and executed locally, executed locally but Internet-
distributed or executed remotelydistributed, or executed remotely.

– Minimize software deployment and versioning conflicts.
– Guarantee safe execution of code, including code created by an

unknown or semi-trusted third party.
– Eliminate the performance problems of scripted or interpreted

environments.
– Make developer experience consistent across widely varying types of

li i h Wi d b d li i d W b b d

5

applications, such as Windows-based applications and Web-based
applications.

– Build all communication on industry standards to ensure that code
based on the .NET Framework can integrate with any other code.

(Source: .NET Framework SDK Documentation)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basics of .NET…

What makes the .NET programming languages
differ from previous versions of Windows
programming languages?programming languages?

6

They differ in the way programs are created and run on the Windows systems.
(C# Network Programming)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

4

Basics of .NET…

The .NET Framework has two main components:
– Common Language Runtime (CLR)

• Central part of the framework that executes .NET programsp p g
• Compilation process

1. Programs compiled to Microsoft Intermediate Language (MSIL)
» Defines instructions for CLR

2. MSIL code translated into machine code using Just In Time (JIT)
compiler
» Produces machine code specifically tailored for a particular

platform

7

» JIT compilation is only performed the first time you run the
program (unless you turn off or reboot the computer) and the
resulting machine code is automatically stored and reused

– .NET Framework Class Library (FCL)
• Pre-packaged components ready for reuse (classes, interfaces,

structs, enumerators, etc)
KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basics of .NET…

How does it relate to Java?

8

The .NET Framework is a collection of Software development tools (similar to
JDK) that can be used to write, debug, compile and execute programs.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Development Environments

.NET Framework SDK
– Download at http://msdn.microsoft.com/downloads

Visual Studio NET (VS NET)Visual Studio .NET (VS.NET)
– Microsoft’s Integrated Development Environment (IDE)

used for Rapid Application Development (RAD)
• Edit, compile, debug, run

– More productive and easy to use development tool
– Program in a variety of .NET languages

9

– Create different types of applications
• Console applications, windows applications, ASP.NET

applications, XML Web Services

– Tools to edit and manipulate several file types

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

C# Language

A new language designed specifically for .NET
platform to provide an optimum blend of simplicity,
expressiveness, and performance.expressiveness, and performance.
The language specification was written by Anders
Hejlsberg and Scott Wiltamuth at Microsoft
Many features of C# were designed in response to
the strengths and weaknesses of other languages,
particularly Java and C++.

10

particularly Java and C .

(Source: Essentials of C#, 2002)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

Hello World Program (v0)

1. // Hello0.cs

Program execution starts at the
Main() method

Source Code:

2. public class Hello0
3. {
4. public static void Main()
5. {
6. System.Console.WriteLine("Hello, World!");
7. }
8. }

11

8. }

Hello, World!

The System.Console
class contains a

WriteLine method that
can be used to display a

string to the console

Program Output:

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Hello World Program (v1)

1 // Hello1 cs

To avoid fully qualifying classes
throughout a program, you can

use the using directive

1. // Hello1.cs
2. using System;
3. public class Hello1
4. {
5. public static void Main()
6. {
7. Console.WriteLine("Hello, World!");
8 }

12

8. }
9. }

Console.WriteLine() is the same as
System.Console.WriteLine()

A namespace such as System contains several
classes and are used to avoid name conflict

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

Hello World Program (v2)

If you need access to the command
line parameters passed in to your

application, simply change the
signature of the Main method to

include them

1. // Hello2.cs
2. using System;
3. public class Hello2
4. {
5. public static void Main(string[] argv)
6. {
7. Console.WriteLine(argv[0]);

13

7. Console.WriteLine(argv[0]);
8. }
9. }

argv[0] will contain the first
parameter you enter after the

application name

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Hello World Program (v3)

1. // Hello3.cs
2. using System;
3. public class Hello3
4. {
5. public static int Main(string[] argv)
6. {
7. Console.WriteLine("Hello, World!");
8. return 0;

14

8. return 0;
9. }
10. }

The application can also return a
code value to the operating system

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

Hello World Program (v3)

1. // Hello4.cs

Define a namespace that has all
related classes inside it to avoid

identifier name conflict

2. using System;
3. namespace Greetings
4. {
5. public class Hello4
6. {
7. public static void Main(string[] argv)
8. {
9 C l W it Li ("H ll W ld!")

15

9. Console.WriteLine("Hello, World!");
10. return 0;
11. }
12. }
13. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Anatomy of the Program …

Namespaces
– The .NET framework class library (FCL) is composed of namespaces

(packages in Java)
A i f l t d l d th i th d– A namespace is a group of related classes and their methods
• Can also be a part of a bigger namespace

– Allows for easy reuse of code and avoids name conflict
– Namespaces are stored in .dll files called assemblies
– To use members of a namespace

• use fully-qualified name, e.g.,
System.Console.WriteLine(“Salam Shabab”);

16

y ()

• include the namespace in the program with the using keyword
– To declare a namespace, use the keyword, namespace and a pair of

braces are used to enclose all members of a namespace
– If a class is not enclosed in a namespace, then it is assumed to be

part of a global namespace, which has no name

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Anatomy of the Program …

Some of the most important namespaces in the CLR

Namespace Description
S fSystem Contains classes that implement basic functionalities like Console

I/O, mathematical operations, data conversions etc.

System.IO Contains classes used for file I/O operations.

System.Net Contains classes that provide access to Windows network functions.

System.Net.Sockets Contains classes the provides access to windows socket interface

System.Collections Contains classes that implement collections of objects such as
linked list, queue, hash table etc.

System.Drawing Contains classes that provide basic graphics functionalities.

S t Wi d F C t i l f Wi d GUI li ti

17

System.Windows.Forms Contains classes for Windows GUI applications

System.Threading Contains classes that are used for multithreading programming.

System.Web Classes that implement HTTP protocol to access web pages.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Anatomy of the Program …
Class declaration
– As in Java, a class is declared using the class keyword, and all members of a

class must be enclosed inline within a pair of braces
The Main() method
– is the entry point of a C# application where program execution begins
– Like in Java, it must be static, however, in C# it has three different signatures

as follows:
public static void Main()
public static void Main(string[] args)
public static int Main(string[] args)

Console I/O: The Console class of the System namespace has a number
of static methods that enable a console application

18

• to display strings and other types of data to the command window, e.g.
– WriteLine() and Write() methods to print a single line of text
– These two methods are overloaded to take different and variable parameters

• for reading
– ReadLine() and Read() methods

public static int Read();// reads a character
public static string ReadLine(); //reads a line as a string

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

10

Variables
A variable represents a typed storage location
A variable can be a local variable, a parameter, an array
element, an instance field, or a static field.
E i bl h i t d t hi h ti llEvery variable has an associated type, which essentially
defines
– the possible values the variable can have and
– the operations that can be performed on that variable

C# is a strongly typed language
– Any variable must be declared to be of certain type, e.g.
double score;

19

double score;
C# is type-safe
Variables must be assigned a value before they are used.
– either explicitly assigned a value or
– automatically assigned a default value (occurs for static fields, class

instance fields, and array elements not explicitly assigned a value)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Value Types and Reference Types
As in Java, variables in C# are of two types, namely, value
types (primitive types) and reference types.
A third type called pointers can be used in unmanaged code
V l tValue types
– C# has more value types than Java
– Contains an actual value of the specified type
– Programmer created

• structs
• enumerations

Reference types

20

– Contain an address of an object
– Programmer create

• Classes
• Interfaces
• Delegates

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

11

Value Types

Type .Net Framework
(System) type

Signed? Bytes
Occupied

Possible Values

sbyte System.Sbyte Yes 1 -128 to 127

short System.Int16 Yes 2 -32768 to 32767short System.Int16 Yes 2 32768 to 32767

int System.Int32 Yes 4 -2147483648 to 2147483647

long System.Int64 Yes 8 -9223372036854775808 to 9223372036854775807

byte System.Byte No 1 0 to 255

ushort System.Uint16 No 2 0 to 65535

uint System.UInt32 No 4 0 to 4294967295

ulong System.Uint64 No 8 0 to 18446744073709551615

float System.Single Yes 4 Approximately ±1.5 x 10-45 to ±3.4 x 1038 with 7
significant figures

21

significant figures

double System.Double Yes 8 Approximately ±5.0 x 10-324 to ±1.7 x 10308 with 15 or 16
significant figures

decimal System.Decimal Yes 12 Approximately ±1.0 x 10-28 to ±7.9 x 1028 with 28 or 29
significant figures

char System.Char N/A 2 Any Unicode character (16 bit)

bool System.Boolean N/A 1 / 2 true or false

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Symbolic Constants

A constant declaration is like a variable declaration,
except that the value of the variable can't be
changed after it has been declared, e.g.changed after it has been declared, e.g.
const double PI = 3.14;

const double speedOfLight = 2.99792458E08;

The keyword const has similar role as the keyword final in Java

22KFUPM: Dr. El-Alfy © 2005 Rev. 2008

12

Example
1. class Addition {
2. static void Main(string[] args) {
3. string firstNumber, // first string entered by user
4. secondNumber; // second string entered by user
5.
6. int number1, // first number to add
7. number2, // second number to add7. number2, // second number to add
8. sum; // sum of number1 and number2
9.
10. // prompt for and read first number from user as string
11. Console.Write("Please enter the first integer: ");
12. firstNumber = Console.ReadLine();
13.
14. // read second number from user as string
15. Console.Write("enter the second integer: ");
16. secondNumber = Console.ReadLine();
17.
18. // convert numbers from type string to type int
19. number1 = Int32.Parse(firstNumber);

23

20. number2 = Int32.Parse(secondNumber);
21.
22. // add numbers
23. sum = number1 + number2;
24.
25. // display results
26. Console.WriteLine("sum is {0}.", sum);
27.
28. } // end method Main
29. } // end class Addition

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Strings
A string is an object that contains a sequence of Unicode characters
String literals are written between double quotations, e.g., “Welcome”
A string reference is declared using String or string, string
greetings=“Welcome!”;g g
You can concatenate two strings using +
string greetings = “Welcome ” + “from C#!”;
You can display a string using
System.Console.WriteLine(greetings);
System.Console.WriteLine(“x= ” + 2);
To get the length of a string use the Length property, e.g.
greetings.Length

24

greetings.Length
Immutable strings (objects of string class type) can't be modified after
creation
Mutable strings (also called dynamic strings) are objects of type
StringBuilder and can be modified -- (similar to StringBuffer in Java)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

13

Manipulating Strings

C# offers a wide range of string-handling features
Testing equality of two strings (duplicate strings are
removed; string interning)
string a = "hello"; string b = "hello";
Console.WriteLine(a == b); // True for String only
Console.WriteLine(a.Equals(b)); // True for all objects
Console.WriteLine(Object.ReferenceEquals(a, b)); // True!!

Indexing strings – the characters in a string are accessed
with a zero-based index
string s = "Going down?";

25

string s = Going down? ;
for (int i=0; i<s.Length; i++)

Console.WriteLine(s[i]); // Prints s vertically

Copying strings
string s2 = s1;
string s2 = string.Copy(s1);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example

1. using System;
2. public class FilenameProcessor {
3. public static void Main(String[] args) {
4. String fullName = "d:/workarea/lab02/MoveRec.java";4. String fullName d:/workarea/lab02/MoveRec.java ;
5. char separator = '/';
6. int dotPosition = fullName.IndexOf('.');
7. int lastSlashPos = fullName.LastIndexOf(separator);
8. Console.WriteLine("The full name is: "+fullName);
9. String path = fullName.Substring(0, lastSlashPos);
10. Console.WriteLine("The path is : "+path);
11. String fileName = fullName.Substring(lastSlashPos+1,
12. dotPosition-lastSlashPos-1);

26

13. Console.WriteLine("The file name is : "+fileName);
14. String fileExtension =
15. fullName.Substring(dotPosition+1);
16. Console.WriteLine("The extension: "+fileExtension);
17. }
18. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

14

Other string manipulation methods

static int Compare(s1, s2) Overloaded. Compares two specified String objects.

int CompareTo(string) Overloaded. Compares this instance with a specified object.

static string Copy(string) Creates a new instance of String with the same value as a specified String.

bool EndsWith(string) Determines if the end of this instance matches the specified String.

bool Equals(object) Overloaded. Overridden. Determines whether two String objects have the same value.

CharEnumerator
GetEnumerator()

Retrieves an object that can iterate through the individual characters in this instance.

int IndexOf(char)
int IndexOf(string)

Overloaded. Reports the index of the first occurrence of a String, or one or more
characters, within this instance.

String Insert(int, string) Inserts a specified string at a specified index of this string. Returns the updated string.

int LastIndexOf(char)
int LastIndexOf(string)

Overloaded. Reports the index position of the last occurrence of a specified Unicode
character or String within this instance

27

int LastIndexOf(string) character or String within this instance.

String PadLeft(int)
String PadLeft(int, char)

Overloaded. Right-aligns the characters in this instance, padding on the left with spaces
or a specified Unicode character for a specified total length.

String PadRight(int)
String PadRight(int, char)

Overloaded. Left-aligns the characters in this string, padding on the right with spaces or
a specified Unicode character, for a specified total length.

String Remove(int index, int
count)

Deletes a specified number of characters from this instance beginning at a specified
position.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Other string manipulation methods …
String Replace(char, char)
String Replace(string, string)

Overloaded. Replaces all occurrences of a specified Unicode character or String in
this instance, with another specified Unicode character or String.

String[] Split(char[]) Overloaded. Identifies the substrings in this instance that are delimited by one or
more characters specified in an array, then places the substrings into a String array.

bool StartsWith(string) Determines whether the beginning of this instance matches the specified String.

String Substring(int start)
String Substring(int start, int
count)

Overloaded. Retrieves a substring from this instance.

char[] ToCharArray() Overloaded. Copies the characters in this instance to a Unicode character array.

String ToLower() Overloaded. Returns a copy of this String in lowercase.

String ToString() Overloaded. Overridden. Converts the value of this instance to a String.

S i () O l d d f hi S i i

28

String ToUpper() Overloaded. Returns a copy of this String in uppercase.

String Trim()
String Trim(char[])

Overloaded. Removes all occurrences of a set of specified characters from the
beginning and end of this instance.

String TrimEnd(char[]) Removes all occurrences of a set of characters specified in a Unicode character array
from the end of this instance.

String TrimStart(char[]) Removes all occurrences of a set of characters specified in a Unicode character array
from the beginning of this instance.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

15

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– C# 3.0 The Complete Reference, 3E, 2005
– C# 3.0 in a Nutshell: A Desktop Quick Reference, 2007
– Pro C# 2008 and the .NET 3.5 Platform, 4E, 2007
– C# How to Program, By Deitel

– Richard Blum, C# Network Programming. Sybex 2002.
Lecture notes of previous offerings of SWE344 and ICS343

29

p g
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

